turning Kanner’s model of autism upside-down

Kanner’s model of autism should be turned on its head.
The idea that Kanner’s syndrome was caused by a fundamental impairment in social interaction has prevented us discovering the causes of autism.
Those are quite bold claims. In the next couple of posts I’ll explain why I made them.

Previously, I suggested that Kanner was using two theoretical frameworks to analyse the behaviour of the 11 children with his unique syndrome; Kraepelin’s classification of mental disorders and psychodynamic theory. Kanner’s comments imply that he interpreted abnormalities in feeding, speech and movement in social and sexual terms because of the psychodynamic framework. I want to look more closely at psychodynamic theory and explain my claim that viewing Kanner’s syndrome as caused by a fundamental impairment in social interaction has proved an obstacle to research into the causes of autism.

How the brain works: the psychodynamic model

As I pointed out earlier, three of the founders of psychodynamic theory, Freud, Jung and Adler, had neurological experience and would have known a fair amount about brain anatomy and about the specific functions of different parts of the brain. What they also would have known about was the patterns of electrical activity that had been observed in the brain. What was little understood at the time was how the brain worked, so the psychodynamic theorists had to make an educated guess based on their observations of people’s behaviour.

What Freud came up with was the idea that human behaviour is driven by life instincts such as the will to survive, to eat, to seek pleasure and sexual gratification. He eventually grouped these instincts together into a primary life instinct or ‘drive’ (Eros) that created flows of energy through the brain. The life drive was the origin of all behaviours that increased the chance of survival, such as an awareness of one’s surroundings and the ability to interact and communicate with others. (Freud later added a death drive (Thanatos) to explain aggression and destructive behaviour). In the light of what we now know about how the brain works, it’s clear that some aspects of Freud’s model were very insightful but others weren’t.

How the brain works: the information-processing model

Fifteen years after Kanner first described his syndrome, David Hubel and Torsten Wiesel began publishing their work on the visual cortex of the cat. Hubel and Wiesel’s research was significant, not just because it told us a lot about how cat vision develops, but because it provided some important insights into how brains in general process information – the mechanism that the psychodynamic theorists were trying to figure out.

Hubel and Wiesel’s research, and the work that followed it, revealed some key principles about how the human brain processes information.

1. All information about the outside world enters the brain via the senses.

2. Sensory information is processed in a hierarchical way, from simple to complex – broadly speaking, from the back to the front of the brain.

3. Different parts of the sense organs respond to different aspects of sensory information and that information is then integrated increasingly as it’s transmitted through the brain.

Say, for example, that I am looking at a table. Different cells in my retina respond to different properties of the pattern of light reflected off the table and entering my eye; some cells respond to the boundaries between light and dark areas, others to light of different wavelengths (colour). This very basic information about the pattern of light from the table is then integrated as it passes through my brain; first it’s chunked up to form a pattern that represents the table I’m looking at. This representation is then linked with stored representations of other images, such as other tables and chairs, and is then integrated with information from other sensory modalities such as what the word ‘table’ sounds like, what the written word ‘table’ looks like, what tables feel like and so on. This information ends up in the frontal area of the brain, which has been described as having an ‘executive function’ – it integrates information from all over the brain and makes decisions on the basis of that information. Except that information doesn’t actually ‘end up’ anywhere, because the brain has a complex series of feedback loops that send information from higher-level areas back to lower-level ones.

What does the way sensory information is processed have to do with Kanner’s syndrome?

Kanner concluded that the ‘…fundamental disorder is the children’s inability to relate themselves in the ordinary way to people and situations’ because he was working within the psychodynamic framework. He saw the children’s abnormal behaviours essentially as caused by a disruption in ‘the usual biologically provided affective contact’ – an instinct that emerged from the life drive. Kanner doesn’t use the terms ‘instinct’ or ‘life drive’ – he doesn’t need to because all his readers would be familiar with that framework – but he makes it clear that he sees affective contact as an innate, biologically-based ability that the children didn’t have.

I can understand where the psychodynamic idea of instincts came from. Most children develop skills like eating, walking, responding to the world around them, interacting with and communicating with other people, without any apparent effort on their part or any significant intervention from adults. Indeed, psychodynamic theorists felt that adult intervention often disrupted normal development. It made sense to assume that natural selection had ensured the ability to relate to people and situations developed instinctively – as automatically as growth or sexual development, or the way the heart, lungs and digestive system function.

I think Kanner’s conceptual model of his syndrome could be represented like this:

Kanner's conceptual model

But from what we now know about brain function, as far as the brain is concerned the ability to relate in the ordinary way to people and situations is exactly the opposite of a basic instinctive drive. There are areas of the brain that specialise in relating to people and situations; they are in the frontal lobes where information from many other brain areas is integrated. Relating to people and situations requires monitoring a constantly changing flow of complex information from a wide range of sources and constant feedback to other parts of the brain. The frontal lobes and their functions develop slowly and mature late – often not until early adulthood. Even after maturity, because of the plasticity of the brain, the frontal lobes continue to change in response to the environment.

Highly over-simplified schematic showing flow of sensory information to frontal lobes

We’re not usually aware of all this complex integration, monitoring and feedback of information; what we usually experience in ourselves, and observe in others, is that responses to the environment and to one another happen instinctively and automatically – that is, until something goes wrong. When we find we have too much or too little information, or that information is ambiguous, or we feel tired, hungry or anxious, then behaviours that most of the time feel and look instinctive and automatic, feel and look a bit less instinctive and automatic.

An impairment in processing any of the streams of information about people and situations would, to some extent, disrupt normal responses to people and situations. In the light of what we now know about the way the brain works, I propose that Kanner’s causal model should have looked more like this;

alternative model for Kanner's syndrome

What we now know about how the brain works suggests that Kanner’s conceptual model of his syndrome should actually be reversed; that relating to people and situations is the outcome of some very complex information-processing requiring input from many parts of the brain, rather than a basic, automatic instinct that drives other behaviours. The implication is that rather than a disturbance in affective contact causing problems with feeding, speech, body movements, social interaction and communication, what’s more likely is that problems with motor function, sensory processing, speech and language resulted in the children’s problems with relating to people and situations in the ordinary way; that Kanner’s model should be turned upside-down.

More on this later, but next I want to look again at Kraepelin’s classification system and find out what happened to Kanner’s syndrome after 1943.